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ABSTRACT 
Study of similarity solutions for flow with heat and mass transfer characteristics on a continuous accelerated sheet 

extruded in a cross-cooling steady stream of an incompressible visco-elastic (Walter’s liquid B’) fluid is a 

analysed.  An industrial application of this type of problem is the cooling of extruded plastic sheet during 

formation process.  

 

The effects of various physical parameters encountering in the study like visco-elasticity, Reynold’s number, 

Prandtl number Shrewood number, and velocity ratio are investigated in an appropriate form using suitable 

analytical methods.  

 

Results for skin friction, heat transfer co-efficient and mass transfer co-efficient are obtained. The power law 

constant for wall temperature and wall concentration have an effective influence on heat and mass transfer 

mechanics.     

 

KEYWORDS: Walter’s liquid, heat transfer, mass transfer, magnetohydrodynamics, cooling stream, similarity 

solutions. 

 

INTRODUCTION 
Mathematical and numerical studies of so-called continuous moving surface flow due to a stretching sheet have 

received a good amount of attention in the literature.  

 

The study of two dimensional boundary layer flow with heat and mass transfer over a stretching surface have 

many industrial applications in different areas.  Heat and mass transfer analysis over a stretching sheet is of much 

practical interest due to its abundant applications in several manufacturing processes and they led to renewed 

interest among young researchers to investigate boundary layer flow over a stretching sheet with various physical 

consequences. 

 

Many materials such as polymer solutions or melts, drilling mud, clastomers, certain oils and greases and many 

other emulsions are classified as non-Newtonian fluids.  In view of the above applications, Sakiadis [1] initiated 

the study of boundary layer flow over a continuous solid surface moving with constant speed.  McCromack and 

Crane [2] provided a comprehensive discussion on boundary layer flow caused by stretching of an elastic sheet 

moving in its own plane with linear velocity. Khan et. al., [3] have obtained appropriate similarity solutions of 

visco-elastic boundary layer flow with heat transfer over an exponential stretching sheet . Cortell [4] have studied 

visco-elastic flow with CST and PST cases in heat transfer analysis.  Bataller [5] also studied the similar problem 

of [4] for PST and PHF cases.  Analytical results were carried out by Vajravelu et. al., [6] who took into account 

the effects of viscous dissipation and internal heat generation.  An analysis of thermal boundary layer in an MHD 

fluid over a linearly stretching sheet in the presence of magnetic field with viscous and joules dissipation and 
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internal heat generation was carried out by Chaim [7].  Recently, Sajid et. al., [8] have studied the analytical 

solutions for MHD flow and heat transfer in an third order fluid over a stretching sheet.  Tak and Lodha [9] made 

an analysis on flow and heat transfer due to a stretching surface.  

 

Ganga et. al., [10] have investigated about the non-linear hydromagentic flow and heat transfer due to stretching 

porous surface with PHF and joule dissipation Ganga et. al., [11] also made a study on the effects of viscous, 

dissipation on MHD flow with heat and mass transfer past a porous stretching surface.  

 

Chung Liu [12] made a detail analysis on flow and heat transfer in an MHD fluid of second grade over a stretching 

sheet with viscous dissipation and internal heat generation.  Besides a great deal of work has been carried out to 

find the similarity solution of visco-elastic fluid flow over an  impervious stretching boundary [13, 14, 15, 16].  

 

Subhas and Veena [17] studied the problem of Vajravelu [6] by including the effects of frictional heating and 

internal heat generation.  

 

Hassanien [18] developed the boundary layer solutions for the flow and heat transfer on continuous flat surface 

in parallel free stream of power law fluid.  Sarma and Rao [19] and Vajravelu and Roper [20] analysed the effects 

of work due to deformation in the energy equation for negative and positive material constant  respectively. 

Again the flow and heat transfer of a second order fluid on a continuous flat surface moving in a parallel free 

stream was studied by Hassanien [21].  Hassanian [22] made an analysis on the flow and heat transfer in a visco-

elastic fluid over a stretching sheet in a cross cooling stream. He showed that the velocity distribution along the 

transverse direction increases with increasing values of  visco-elastic parameter k1 for the case um > uwm and the 

opposite effects are observed for the case uwm > um.  Neil [23] imposed a technical  note on the similarity solutions 

for flow over an impermeable sheet . The same problem was  studied by Raptis and Perdikis [24] over a  non-

linearly stretching sheet. 

 

All the above studies are restricted only to the flow of visco-elastic fluid past a stretching with heat transfer 

analysis.  Thus motivated by the above analyses in the present paper, the study of steady cross-cooling two 

dimensional flow of an incompressible visco-elastic fluid (Walter’s liquid B’ model) is considered whose constitutive 

equation  based on  the  postulate of fading memory suggested by Coleman and Noll [25].   

 

Further the combined effect of the stretching or accelerating phenomena during the sheet formation process and 

the acceleration rate of cooling stream at the edge of boundary layer are studied. Heat and mass transfer analyses 

are carried out. I n energy transfer internal heat generation is considered.  A simple and suitable normalization 

technique is employed which enables us to clarify the effects of Reynolds number , Prandtl number and Shrewood 

number for all possible combinations of the velocity gradient (0), temperature gradient (0)  and concentration 

gradient - (0) both for the sheet and the cooling stream on the values of skin friction co-efficient, heat transfer 

co-efficient and the mass transfer co-efficient.  Heat and mass transfer from a sheet with constant or variable 

surface temperature simulating the cooling process are also considered in the study.  

 

MATHEMATICAL ANALYSIS  
An incompressible second order fluid with constitutive equation given by author [25] is considered and which is 

given as  

 
2
12211 AAAPIT    …(i) 

 

where all notations have usual meanings and are noted in nomenclature.  The kinematic Rivlin-Erickson tensors 

A1 and A2 are defined as.     

 A1 = L + LT …(ii) 

 A2 = 1
T

1
1 ALLA

dt

dA
  …(iii) 

where 
dt

d
is the material derivative and L = V.  Since the fluid is of second grade, it has to satisfy the Clausiues- 

Dehum  in- equality for all motions and the assumption that the specific Helmotz free energy of the fluid is 

minimum when it is locally at rest.  Then the requirements for the modulli are  
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 0,   1>0  and  1 + 2 = 0 …(iv) 

 

where the sign of 1 has been a subject of controversy.  In this view a critical review is already made by Dunn 

and Rajgopal [26] and the fluids of second grade with negative 1 may result in physically impossible flow 

situation.  Model (i) considered by [25] displays normal stress difference in shear flow and is an approximation 

to a simple fluid in the sense of retardation.  This model is applicable to some dilute polymer solutions at the low 

rates of shear.  The physical model is described as below.  An endless moving sheet extruded from a slit or 

extrusion die with a surface velocity uu(x) increasing through the zone of deformation from zero to a final wind-

up velocity uum.  The sheet is extruded in a uniform cross flow of a cooling fluid.  The extrusion conditions are 

defined as in nomenclature at the boundary layer edge. Laminar boundary layer flow usually occurs over a length 

of about 0.5m from the extrusion die.  This is however, the zone over which the major part of the stretching 

process, heat transfer takes place.  The obtained solution is valid for points down stream of 0” the point of 

maximum sheet thickness where the axial velocity has become approximately uniform over the cross-section of 

the extruded material upto the order of 0” of solidification after which the extruded sheet becomes completely 

solid with uniform thickness and speed.  

 

The effects of spatial variations viz. fkand, are negligible as considered in [22].  The velocity components 

u & v are normalized by the largest velocity in the boundary layer as reference velocity Lxatur  - the 

characteristic length which is defined as  

 














mwmwm

mwmm
r

uuifu

uuifu
u  …(v) 

 

The physical model Fig. (I) which is a symmetrical figure and thus only one half of it is shown can be divided 

into two regions.  

a. The boundary layer along the extruded sheet and 

b. The external frictionless potential flow outside the boundary layer.  

 

 Thus considering the stream function of the potential flow as 

 xyu me   …(vi) 

 The velocity distribution of the flow is given by  

 yuvxuu meme   ;  …(vii) 

 and the relation between the cooling stream velocity at duct exit v0 and the maximum velocity um at the 

boundary layer edge is given by [22] as 

 v0 = -um y0     …(viii) 

 and the sheet speed in the deformation zone is approximated as  

 uw = uwmx, o  x  1 …(ix) 

where x is the normalized distance.  Now defining the Reynolds number as  

 1,
1

2











 O

Lu
Re




 …(x) 

 

Introducing the following dimensionless variables we obtain the resulting dimensionless boundary layer equations 

developed along the extruded sheet.  

      ,1/;/;1/ OuuuOLyyOLxx r   

    1);1(
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
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






  …(xi)    

 0
y

v

x

u










 ...(1) 
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
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


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
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 …(4) 

with boundary conditions  

    10,

,0,;0

0 



 xxTTTxT
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w 
 

    l

s xCCCxC   0
 …(5) 

  CCTTuuy ,,,    …(6) 

where 
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and the pressure gradient along x is given by 
dx

du
u
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p 
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 …(7) 

where  
 

 
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
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,  …(8) 

 

Refining the following similarity variable and stream transformation as  

          1|,Re;1Re, OxyxfOyyx    

        1;1 O
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   …(9) 

 substituting equations (9) into equations (2), (3) and (4) we get 

 
2
m

2
1

2 u]fffff2[kffff    …(10) 

 where 

11

'
Pr







 Q
Qand

cp
  

 0)('    QlffPr
 …(11) 

 0   flScScf  …(12) 

where suffix  denotes differentiation w.r.t it and k1 = 


 Lu r1 is the visco-elastic parameter. 

 The  velocity components u and v converts to  

 
Re

;
f

vxfu    …(13) 

Then the boundary conditions (5) and (6) become  

           0,10;;0,00    mum ufuff  

       0,10;0f    …(14) 

 If  um > uum then um = 1, o  uum 1 …(14a) 

  If  uum > um then uum = 1, o  um 1 …(14b) 
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Equation (10) can be recognized as the Hiemenz flow [  ] and it can be reduced to Falkner-skan flow of second 

grade fluid [   ] when um = 0 subjected to the boundary conditions  

f(0) = 0,       0fand1f,00f    …(15) 

 

ANALYTICAL SOLUTION 
In order to get the exact analytical solution of equation (10) which is non-Newtonian model and is applicable to 

dilute polymer solutions, applying retarded-motion expansion by assuming k1   1 and expanding the velocity 

function f with respect to visco-elastic parameter k1 as  

f = f0 + k1 f1 + 2
2
1 fk  …(16) 

substituting the above expansion in equation (10) and considering the first two terms of the series expansion, we 

obtain  

 2
m

00020
uffff



  …(17) 

    00
2
0001010011 fffff2ff2fffff  …(18) 

   0   QlfPfP rr
 …(19) 

 0   lfScfSc  …(20) 

with the following boundary conditions  

       0f,u0f,00f 0um00    …(21) 

     0;10    …(22) 

     0;10    …(23) 

Now it is interesting to study that the exact analytical solution of equation for um = 0 is obtained as  

      0exp1 1  parameterelastickforf   …(24) 

on the other hand Troy et. al., [   ] obtained the solution of equation [10] as 

  
1k1

1
,

e1
f















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

 …(25) 

satisfying the boundary conditions (14) and gives the new velocity components  
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;
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







 xeu

                                                                                           …(26) 

                                                                                                                           …(27) 

 

To solve energy equation (19) and mass diffusion equation (20), introducing the new change of variables  

 



 e

Pr

2


  …(28) 

 



 e

Sc
2

  …(29) 

 

Substituting (3), (28) , (29) and f()  in equations (19) and (20) respectively they yield to the following form of 

equations.  

   01
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 …(30) 
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 …(31) 
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The boundary conditions are converted to  
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Now the solutions of both the equations (30) and (31) with respect to the boundary condition s (32) and (33)  

interms of  are obtained and expressed interms of confluent hyper geometric (Kummer’s) functions [29] as 

follows  
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The non dimensional wall temperature gradient and wall concentration gradient derived from equations (34) and 

(35) respectively as 
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Heat transfer co-efficient  

 The local Nusselt number Nux along the sheet is derived as 

   Re00)/(  yyTNux  …(38) 

 

Mass transfer co-efficient 

 The local Shrewood number Sh along the sheet is defined as  

   Re0)/(  oyyCSh  …(39) 

            The local wall heat flux and mass flux can be derived and expressed as  
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  …(41) 

Skin friction coefficient  

The wall shear stress w can be expressed interms of dimensionless skin-friction coefficient Cf as0 
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Nomenclature 

A1, A2 = First and second Rivlin-Erickson tensors  

Cp = Specific heat at constant pressure 

Cf = Skin friction coefficient  

D = Diffusivity  

f = Dimensionless velocity  

F (a,b,z) =  Kummers functions 

k = visco-elasticity 

l  = Characteristic length  

L  = Characteristics length 

L =  V  

Nu = Nusselt number 

p = Pressure/parameter 

Pr = Prandtl number 

q = heat source 

Q = Internal heat source parameter in equation (3) 

Re = Reynolds number 

Sc = Schimidt number 

Sh = Shrewood number 

r, w, u = Suffixes for velocity  

T = Temperature  

Tw = Wall temperature 

T = Ambient temperature  

oT
T  = Cauchy stress tensor solidification temperature  

u, , ur = Velocity components 

V = Velocity vector 

x,y = Co-ordinate system 

k1 = Elastic parameter  

 

Greek symbols     

* = Dimensionless internal parameter 

  = Positive root of cubic equation  

1, 2 = Material constant  

 = Boundary layer thickness 

 = Dimensionless concentration variable  

  = Dimensionless temperature variable  

 = Dimensionless similarity variable  

 = Dynamic viscosity  

 = Kinematic viscosity  

 = Density  

 = New dimensionless change of temperature variable  

 =  New dimensionless change of concentration variable  

 = Stream function  

w  = Wall shear stress 

 = Dimensionless shear stress  

wmu  = Windup speed 

mu  = Final reference speed 

0T  = Solidification temperature 

T  = Environmental 

t(x) = Sheet thickness 
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 xuw  = Sheet velocity   

mu  = Reference velocity  

u  = Free stream velocity  

dt

d
 = material time derivative  

wmU  = Windup velocity  

 

RESULTS AND DISCUSSION  
In order to have a physical point of view of the problem, numerical calculations were carried out for different 

values of visco-elastic parameter k1, Prandtl number Pr, Schimidt number Sc and Reynolds number Re.  

 

The dimensionless and transverse velocity profiles     f&f  for five different cases of 

mummum uuanduu    are presented in figures 1 and 2.  It is observed that the slopes of the corresponding 

curves in Fig. 1 at  = 0, to  = 8 rise steadily for the case uum < um but the opposite effect are observed for uum 

> um, which explains that the boundary layer thickness is uniform for each case (uum, um). It is also revealed from 

Fig. (1) that the wall shear stress is larger for uum < um than for uum > um. 

 

Fig. 2 shows that the normal velocity  acts always towards the extruded surface and for the same Reynolds 

number wall shear stress is larger for uum < um than uum > um. 

 

Fig. 3 dipicts the dimensionless temperature distribution within the boundary layer for the same four cases of (uum, 

um) for Pr = 3 and the case of uniform wall temperature l  = 0.  The nature of the curves measures the wall heat 

transfer and shows the thickness of the thermal boundary layer as   .OtoTT     

 

Fig. 4a. is the presentation of friction factor f(0) for two values of visco-elastic parameter k1 = 0.0 and k1= 0.2.  

From the figure it is observed that for the four possible combinations of uum and um, the curves lie in two groups.  

The upper two curves refers the value range uum < um and the lower two curves are for uum > um.  

 

The values of friction co-efficient for a given value of Re depends only on the normalized velocity difference | 

uum-um |, but also on that of the sheet and the cooling stream which moves faster. Skin friction co-efficient is 

larger from uum < um than for uum > um for non-Newtonian and Newtonian fluid flows which is because of the 

pressure gradient along the sheet is large.  

 

Fig. 4b. is plotted for the skin friction co-efficient f(0) Vs Reynolds number for various values of visco-elastic 

parameter k1.  From the figure it is apparent that the curves are independent of the magnitudes of the velocities 

whose effects are contained in the Reynolds number Re and the velocity difference.  

 

In fig. 5 the graph of temperature profiles () is drawn for various values of Prandtl number Pr.  It reveals from 

the figure that an increase in Prandtl number is associated with a decrease in temperature distribution within the 

thermal boundary layer for the same four cases of (uum < um). 

 

Fig. 6 is drawn to explain the effect of Pr on wall temperature gradient (O) for the same value of Reynolds 

number Re=100.  From the figure we can see that the rate of heat transfer decreases for increase in both Prandtl 

number and wall temperature parameter l .  Temperature gradient is negative for all values of wall temperature 

parameter.  Physically it means that heat flows from the surface to the ambient fluid.  This is consistent with the 

fact that the thermal boundary layer thickness decrease with increasing Prandtl number and is well in agreement 

with the results of [6] and [22].  

Fig. 7 is the graph of (0) vs. wall temperature parameter l .  when l  =1, there is no heat transfer between the 

surface and the ambient fluid, where l < 1,  (0) is positive and l  > 1 , (0) is negative.  
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Fig. 8 is the representation of concentration profiles  () for different values of Schimidt number Sc.  Increase 

in Schimidt number decreases the concentration distribution within the boundary layer.  

 

Fig. 9 display the variation of rates of mass transfer  (0) against wall concentration parameter l for the same 4 

sets of (uum, < um).  The concentration gradient of the fluid reduces with increase in l. 

 

Fig. 10 illustrates the graph of concentration gradient  (0) against Schimidt number Sc. It is observed from the 

figure that for increasing values of Sc, the concentration distribution steadily decreases within the concentration 

boundary layer.   

 

 
Fig1. Graph of longitudinal velocity distribution fη(η) Vs. η for visco-elastic  parameter k1= 0.2 , α = 0.375 
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Fig2. Graph of transverse velocity distribution f(η) Vs. η for the value of visco-elastic  parameter k1= 0.2 , α = 

0.375 

 

 
Fig3. Graph of temperature profiles  θ(η) Vs. η for the value Pr = 3, Q = 0.5,  Re = 100 
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Fig4a. Graph of skin friction gradient  fηη(0) Vs. the velocity difference | uwm  -  uδm | for visco-elastic 

parameter k1 = 0.0 and k1 = 0.2,  Re = 100 

 

 
Fig4b. Graph of Skin friction co-eficient fηη (0) Vs. Reynolds number Re for various values of visco-elastic 

parameter. 
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Fig5. Graph of temperature profiles  θ(η) Vs. η for visco-elastic parameter k1=0.2, Q=0.5,  Pr = 1, 3,5,7 

 

 
Fig6. Graph of dimensionless temperature distribution  θη(0) Vs. Prandtl number Pr for 

k1=0.2, Q=0.5,  Re = 100 and 4 sets of values of uwm and uδm 
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Fig7. Graph of wall temperature gradient θη(0) Vs. characteristic length l and k2 = 0.2, Q = 0.5, Pr= 7 

 

 
Fig8. Graph of concentration profiles   φ(η)  Vs. η for  k1= 0.2 , for different values of Schimidt number Sc, Re 

= 100 α = 0.375 
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Fig 9. Graph of WALL concentration gradient  -φ’(0) Vs. wall concentration parameter l.  Sc = 0.65,  Re 

= 100 

 

 
Fig10. Graph of wall concentration gradient θη(0) Vs. Schimidt number Sc for Re = 100, l = 1 and k1 = 0.2 
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CONCLUSIONS 
Exact boundary layer similarity solutions are studied for the visco-elastic flow, heat and mass transfer 

characteristics on a continuous sheet extruded in a cross-cooling stream.  

1. The value of skin-friction co-efficient for a given value of Reynolds number depends not only on the 

normalized velocity difference | uum-um |, but also on the sheet and the cooling stream.  

2. For the same Prandtl and Reynolds numbers and the same normalized velocity difference, the heat 

transfer co-efficient is larger for the range  uum > um than uum < um. 

3. For the same Schimidt and Reynolds number the mass transfer co-efficient is larger for the case uum > 

um than uum < um. 

4. Formation of thin thermal boundary layer and concentration boundary layer is observed far away from 

the plate. 

5. The flow of heat becomes faster when the Prandtl number increases. 

6. An increase in Schimidt number results in lowering the concentration distribution steadily.  
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